

■ Poster Session 1:

• Date & Time... 9:20 - 13:30, Wednesday 11th, March

• Topics of the Call for Papers

1. Management of Human Resources in Winter Service
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonisation
4. Implementation of new technologies and methods in winter operation
5. How can we resilience of aging bridges be improved in the context of climate change?
10. Management and Resilience Building for Disasters
11. Rural Roads Resilience in a Changing Climate
18. Strategic Road Investments: Contributions and Impacts on National Decarbonisation Plan
21. Measures to reduce the carbon footprint of pavement

• Venue... Gallery 2, Savoexpo, Chambery

• Related Oral Sessions...

[W01 - Automatic Spreading and Digitalisation Part 1](#)
[W02 - Overview of winter service worldwide](#)
[W03 - Risk assessments due to challenges in winter maintenance caused by climate change](#)
[W04 - Human Resource Management in Winter Service](#)
[R01 - How can the resilience of aging bridges be improved in the context of climate change?](#)
[R10 - Rural Roads Resilience](#)
[R11 - Extreme Weather: Coping Mechanisms](#)
[R12 - Extreme Weather: Cooperative Solutions](#)
[D01 - Driving Decarbonisation with Road Investments](#)
[D02 - Measures to reduce the carbon footprint of pavements - part 1](#)
[D03 - Measures to reduce the carbon footprint of pavements - part 2](#)

Topics of the Call for Papers	Reference No.	Last Name of the first author	First Name	Title of the paper in English
1. Management of Human Resources in Winter Service	74	DeVries	Richard (Mark)	An International Training Program for Supervisors and Operators in Winter Operations
1. Management of Human Resources in Winter Service	89	Scharnigg	Karen	E-learning for an analogue professional field – designing practice-oriented digital learning opportunities for employees in road (winter) operation services
1. Management of Human Resources in Winter Service	122	ANIBALLI	FERNANDO	A Digital HRM Platform for the Winter Service Workforce: An Innovative Solution for Recruitment, Training, and Resilience
1. Management of Human Resources in Winter Service	163	Pawlak	Adam	Management of Winter Maintenance Human Resources in Calgary, Canada
1. Management of Human Resources in Winter Service	332	Droma	Konrad	Winter road maintenance supervision and cyclical training program for supervisors
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	95	Daliphard	Joseph	Natural disaster in the Maurienne: how to clear snow from a strategic cross-border motorway route after the major landslide in the summer of 2023
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	125	Aniballi	Fernando	Navigating Winter Challenges: A Sustainable Approach to Winter Service Operations in the Age of Climate Change
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	194	Haskins-Vaheesan	Bethany	West Midlands Climate Risk & Vulnerability Assessment (CRVA) for Transport
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	209	Harada	Yusuke	Development of performance requirements for living snow fences during severe snowstorm events
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	292	NAKAMAE	Shigeyuki	A study on snow transportation and removal costs during heavy snowfall, taking into account transportation time
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	327	CORTEZ CHAVEZ	ROGER ANDRES	Oruro Defying Winter the Study on the Implementation of Radiant Roads in Bolivia a Technological Adaptation for Tomorrow
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	362	POURRAZ	Frédéric	Avalanche forecasting and road management: resilience in action in the Savoie Department
2. Impact of climate change and extreme weather on Winter Service (WS) as well as WS environmental aspects and decarbonization	405	Alarcón García	Rachael	Dynamic Network Management for Severe Weather Events on the A628 Woodhead Pass
4. Implementation of new technologies and methods in winter operation	73	DeVries	Richard (Mark)	Automating Salt Application Rates using On-Board Sensors for Spreading Control
4. Implementation of new technologies and methods in winter operation	100	De Biasi	Ilaria	Implementation of innovative technical solutions to optimize winter maintenance activities combined with the use of C-ITS technologies to increase users' safety along the Brenner Motorway
4. Implementation of new technologies and methods in winter operation	103	Ikeda	Noriaki	Development of the Autonomous Traffic Sign Vehicle Using the Quasi-Zenith Satellite System and the Vehicle-To-Vehicle Communication System on Expressways in Japan
4. Implementation of new technologies and methods in winter operation	115	Ishida	Atsunori	New antifreeze agent reduces life cycle costs of expressways structures.
4. Implementation of new technologies and methods in winter operation	151	Sugawara	Kuniyasu	Simultaneous detection of snowdrifts and visibility reduction due to blowing snow using 2D LiDAR
10. Management and Resilience Building for Disasters	61	OKAMOTO	KATSUNOBU	Measures for traffic managements during abnormal snowfall with a focus on avoiding large-scale traffic congestion
10. Management and Resilience Building for Disasters	229	Long	Rachel	Connect Plus Services Emergency Diversion Routes, In-depth Assessment
10. Management and Resilience Building for Disasters	240	Stell	Marvin	Impacts of extreme weather events on road infrastructure and availability: case studies of the July 2021 flood disaster in Western Germany
10. Management and Resilience Building for Disasters	353	DAVI	Denis	Guidelines for the evaluation of road bridges in a post-earthquake emergency situation
10. Management and Resilience Building for Disasters	423	Mittiga	Enrico	Pursuing infrastructural assets resilience through the Anthropocene Age: a de-risking analysis of the Italian national road network, using the satellite-based Copernicus European Ground Motion Service
11. Rural Roads Resilience in a Changing Climate	27	Boily	Mathieu	Analysis of the impact of access roads to hydroelectric facilities as a function of climate change
11. Rural Roads Resilience in a Changing Climate	55	Burghardt	Tomasz	The damage of road markings by snow ploughing: a case study of a secondary rural road in Austria
11. Rural Roads Resilience in a Changing Climate	62	Sawangsuriya	Auckpath	Biochar capillary barrier system for erosions and slope protection measures of rural roads resilience in a changing climate
11. Rural Roads Resilience in a Changing Climate	258	PLASSARD	Florent	Adapting masonry structures to climate change: Feedback from the floods of October 2024 in the Loire and Ardèche departments
11. Rural Roads Resilience in a Changing Climate	320	Abdirahman	Abas	Enhancing Rural Road Resilience in a Changing Climate
11. Rural Roads Resilience in a Changing Climate	441	Sisekho	Sako	South African Gravel Roads Sustainability: An Argument in Favour of Gravel Roads Within The Eastern Cape
15. How can the resilience of aging bridges be improved in the context of climate change?	18	Papastergiou	Dimitrios	Transforming bridges for redundancy and robustness. Elimination of Gerber hinges on swiss national road bridges.
15. How can the resilience of aging bridges be improved in the context of climate change?	123	Anastassiadou	Kalliopi	Measures for increasing resilience of bridges using a GIS-based decision support tool
15. How can the resilience of aging bridges be improved in the context of climate change?	139	Porres López	Adriana	Strategies to Increase the Resilience of Road Bridge Infrastructure Against Natural or Anthropic Disasters
15. How can the resilience of aging bridges be improved in the context of climate change?	158	Singleton	Philip	Enhancing scour assessment of highway structures through automation
15. How can the resilience of aging bridges be improved in the context of climate change?	198	Hayato	Nakagami	Innovative Efforts on the Two-way Traffic Regulation for the Bridge Renewal Projects of Aging Japanese Expressways
15. How can the resilience of aging bridges be improved in the context of climate change?	246	MOTSCH	Catherine	Renovation of the Autreville viaduct in Meurthe-et-Moselle (FRANCE)
15. How can the resilience of aging bridges be improved in the context of climate change?	272	ZHANG	GAOQIANG	Resilience Assessment of Highway Curved Bridge Groups Under Unexpected Earthquakes
15. How can the resilience of aging bridges be improved in the context of climate change?	287	López Oliver	David	Climate Vulnerability Assessment of the Bridges in the Community of Madrid
15. How can the resilience of aging bridges be improved in the context of climate change?	433	MAEHARA	SHINYA	Design Approach for Ensuring Road Network Resilience to Fault Displacement
18. Strategic Road Investments: Contributions and Impacts on National Decarbonization Plan	146	Nezu	Yoshiki	Understanding the energy consumption characteristics of gasoline-powered vehicles, electric vehicles, etc.
21. Measures to reduce the carbon footprint of pavements	29	Wright	Michael	Performance of graphene-enhanced polymeric modified asphalt surfaces incorporating reclaimed asphalt on the Strategic Road Network in England
21. Measures to reduce the carbon footprint of pavements	30	Wright	Michael	Trials of bio-binders on the Strategic Road Network in England in conjunction with reclaimed asphalt and warm-mix to decarbonise asphalt production
21. Measures to reduce the carbon footprint of pavements	80	Pereira Jardim	Jose	Suitability Assessment of Tyre-Derived Oil for Replacement as Low Carbon Heating Fuel in Asphalt Plant Boilers and as Bitumen Additive
21. Measures to reduce the carbon footprint of pavements	82	Pereira Jardim	Jose	Application and Performance Analysis of Bituminous Materials Modified with Sustainable Waste-Tyre Products Obtained from a Continuous Reductive Distillation Process
21. Measures to reduce the carbon footprint of pavements	127	Bateman	Damien	Performance Evaluation of High Recycled Asphalt Content on Surface Course – TLRN Case Study
21. Measures to reduce the carbon footprint of pavements	159	Barišić	Ivana	Green pavement solutions for cold regions – waste materials in freeze-thaw resistant pavements
21. Measures to reduce the carbon footprint of pavements	167	MATSUMOTO	Daisuke	Calculation Method for the Impact of Snow and Ice on Road Surfaces on Fuel Efficiency and CO2 Emissions of Large Vehicles
21. Measures to reduce the carbon footprint of pavements	168	Hashi	Honoka	Comparative evaluation of the effect of different aggregates in asphalt pavements on their adhesion to asphalt
21. Measures to reduce the carbon footprint of pavements	217	GODENKI	Hajime	Development of a New Recycled Warm Mix Asphalt Pavement Utilizing Formed Asphalt Technology
21. Measures to reduce the carbon footprint of pavements	289	Pley-Leclercq	Hugo	Sustainable highway development integrating LCA, circular economy, and carbon offsetting in Armenia
21. Measures to reduce the carbon footprint of pavements	321	Hashemian	Leila	Carbon Footprint Reduction Potential of Asphalt Emulsion Stabilized Base Course with 100% RAP
21. Measures to reduce the carbon footprint of pavements	351	HIRAKAWA	Kazunari	Plant-mix modified asphalt aiming to extending lifecycle for pavement rehabilitation.
21. Measures to reduce the carbon footprint of pavements	376	Kobayakawa	Naoyuki	Asphalt Pavement Using Waste Plastics as the Exclusive Aggregate
21. Measures to reduce the carbon footprint of pavements	384	Rahman	MD MAHBUBUR	Embedding Life Cycle Assessment in Sustainable Project Planning and Implementation: Reducing Embodied Carbon through Reclamation and Design Optimization- A Case Study from Bangladesh
21. Measures to reduce the carbon footprint of pavements	400	FEESER	Arnaud	Recommendations for assessing greenhouse gas emissions from road projects
21. Measures to reduce the carbon footprint of pavements	452	Solis-Navarro	Carlos	Leveraging Artificial Intelligence for the Design of Resilient and Sustainable Pavements: A Case Study from the Hawkesbury Valley Flood Recovery Programme
21. Measures to reduce the carbon footprint of pavements	454	Pillard	Wilfried	IDEE national research project (Decarbonized Infrastructures with Emulsion Asphalt Mixtures)
22. Decarbonisation of road construction and maintenance	396	Wheatley	Robert	"Avoid, Switch and Improve" – three examples of how bridge design and construction is decarbonising in the UK.